1	Q.	Reference: 2018 Cost of Service Methodology Review Report, page 10, lines 1-4
2		
3		Both Hydro and CA Energy recommend the use of the equivalent peaker method for
4		classification of Muskrat Falls power purchase costs. The Brattle Group in its report page
5		32, line 4 to page 37, line 7 recommends that these costs be classified based upon system
6		load factor. Brattle provides five reasons for its recommendation. Explain in detail whether
7		or not (i) Hydro and (ii) CA Energy accept Brattle's recommendation in this regard. In the
8		response provide commentary on each of the five reasons Brattle relies on for its
9		recommendation in this regard.
10		
11		
12	A.	(i) Newfoundland and Labrador Hydro's Response:
13		
14		For clarification, The Brattle Group, Inc. ("Brattle") recommended that purchase power
15		costs related to Muskrat Falls generation should be classified based on system load
16		factor and purchase power costs related to the Labrador-Island Link ("LIL") and the
17		
- /		Labrador Transmission Assets ("LTA") be 100% demand-related.
18		Labrador Transmission Assets ("LTA") be 100% demand-related.
18 19		Labrador Transmission Assets ("LTA") be 100% demand-related. Table 1 provides the resulting overall demand-energy classification reflecting Brattle's
18 19 20		Labrador Transmission Assets ("LTA") be 100% demand-related. Table 1 provides the resulting overall demand-energy classification reflecting Brattle's classification recommendation, based on the "Illustrative 2021 Cost of Service Study"

Table 1: Classification of the Muskrat Falls Project Power Purchase Costs, The Brattle Group, Inc.

	Mathad	Demand-Related		Energy-Related		Total
	Wethod	(\$000)	%	(\$000)	%	(\$000)
Muskrat Falls Generation	System Load Factor	133,031.9	45.4	159,989.9	54.6	293,021.8
Net Export Revenues	System Load Factor	(24,238.5)	45.4	(29,150.2)	54.6	(53,388.7)
LIL-Related	100%-Demand	379,849.0	100	0	0	379,849.0
LTA-Related	100%-Demand	52,887.3	100	0	0	52,887.3
Total		541,529.7	80.5	130,839.6	19.5	672,369.3

1		Table 1 chouse that using Drattle's close if institution recommendations, slightly grapter than
T		Table 1 shows that, using Brattle's classification recommendations, slightly greater than
2		80% of the projected 2021 purchase power costs related to the Muskrat Falls project
3		would be classified as demand related. Prior to the accessibility of off-island purchases,
4		approximately 85% of the test year revenue requirement related to Holyrood was
5		classified as energy-related costs. ¹
6		
7		It is the replacement of the Holyrood Thermal Generating Station (primarily energy-
8		related) costs with the Muskrat Falls supply cost payments that has created the need to
9		review the cost of service methodology. From a cost-causation perspective, Hydro does
10		not agree with Brattle's recommendation that the overall classification of the Muskrat
11		Falls project purchased power expense be approximately 80% demand-related and only
12		20% energy-related.
13		
14		In part (ii) of this response, Christensen Associates Energy Consulting ("CA Energy
15		Consulting") provides commentary on each of the five reasons Brattle relies on for its
16		recommendation for classification of the purchased power expense related to Muskrat
17		Falls generating assets. Hydro agrees with CA Energy Consulting's comments on
18		Brattle's classification recommendation.
19		
20	(ii)	Christensen Associates Energy Consulting's Response:
21		
22		CA Energy Consulting does not agree with Brattle's recommendation that Hydro be
23		required to use system load factor as the cost classification mechanism for Muskrat
24		Falls power purchase costs. Instead, we continue to recommend that the Board of
25		Commissioners of Public Utilities consider the equivalent peaker methodology for the
26		reasons stated in our report. The Brattle report cites five reasons for their

¹ For the 2007 and 2004 Test Years, respectively, 86% and 82% of the Holyrood Thermal Generating Station revenue requirement was classified as energy-related. For the 2015 Test Year approximately 84% of overall Holyrood Thermal Generating Station costs would be classified as energy-related.

1	recommendation that Hydro use system load factor. The Brattle Group reasons, with
2	our responses follow.
3	
4	1. Claim: Hydro uses system load factor for classifying the costs of many of its
5	other generators.
6	Response: Hydro currently uses more than just system load factor for cost
7	classification of generation. Hydro, the PUB, and stakeholder should face no
8	constraint on the selection of a method for classifying Muskrat Falls costs
9	arising from the use of SLF for selected facilities.
10	
11	2. Claim: System Load Factor is a simpler method.
12	Response: System load factor is indeed simpler, but, as the NARUC Cost of
13	Service Manual states, no method of classification is superior to all others, and
14	simplicity is just one dimension providing value to the classification process.
15	The Equivalent Peaker approach has the advantage of methodological
16	soundness, as it aligns with least-cost planning and resource choice, in which
17	planners select from among the set of feasible technologies, sometimes
18	characterized as baseload, intermediate, and peaking plants/sources
19	depending on capital and fuel cost alternatives. The analytical methods utilized
20	in resource choice can obtain least total costs, accounting for substitution
21	between charges for primary fuels, capital-related charges, and fixed and
22	variable O&M costs, among others.
23	
24	3. Claim: Under Equivalent Peaker, the energy portion of cost is a residual after
25	computation of demand-related cost, and is thus vulnerable if baseload
26	generator investment is unusually high or low. An example is construction cost
27	overruns, which can inflate the energy-related share of costs.
28	Response: That energy share is a residual is not, by definition, a disadvantage,
29	especially since both peaking plant and total costs are separately estimated.

1		The residual element of energy is not definitionally problematic—in fact, fuel-
2		cost related share of total expenditure aligns with efficient marginal cost-based
3		pricing and least cost facility planning (as discussed above).
4		Under Equivalent Peaker cost allocation, the fuel cost savings-related share can
5		rise (or fall) more than the demand-related share. Such result is appropriate:
6		indeed, the relevant industry history with respect to cost overruns reveals that
7		it is the base load generators that often experience cost overruns.
8		Understanding that the only reason to invest in base load generation is for the
9		expected realization of fuel cost savings, Equivalent Peaker cost allocation gets
10		it right: potential cost overruns accrue to energy, exactly where they belong.
11		Under Equivalent Peaker, cost overruns that are accepted for recovery by
12		regulators are rightly incorporated in classification calculations. If a base load
13		generating unit has a serious overrun and if those costs are recoverable, then it
14		is appropriate that a comparatively high cost share—a result of intended fuel
15		cost savingsbe allocated to energy, since the purpose of the committing to
16		base load generation, legitimately incurred, is for the realization of fuel cost
17		savings.
18		
19		A subsidiary question is whether the inclusion of dedicated generation feeder
20		(transmission) line is inappropriate. In our view, if the lines must be included in
21		generation cost, then a case can be made for inclusion of such costs in the
22		Equivalent Peaker computation.
23		
24	4.	Claim: The price signal that results from an application of Equivalent Peaker
25		cost allocation with a high energy share would be a high energy price and low
26		demand price, allegedly reducing the energy conservation incentive that would
27		result from a high demand charge.
28		Response: This line of argument reasons from outcome, which is dubious.
29		Furthermore, it is not appropriate to select a classification system based upon

1		views as to what the level of the demand charge should be. Additionally, a
2		demand charge, on its own is not likely to be a price signal used by retail
3		customers. Instead, overall perception of the cost of increasing usage (marginal
4		price) is a better guide. The demand price is just one component of the price.
5		
6		Another consideration is that a high energy charge and low demand charge
7		that are based on a sound Cost of Service study would cause prices to align well
8		with resource cost configuration, and least total cost. High load factor systems
9		would utilize base load facilities more intensively than a low load factor system,
10		and would obtain lower total costs insofar as investment decisions that
11		substitute capital expenditures for primary fuel expenditures would naturally
12		result from the least cost selection of resources. In addition, the efficient
13		pricing incentives associated with Equivalent Peaker are appropriate, and
14		follow directly from differences in the configuration of systems.
15		
16	5.	Claim: The Muskrat Fall power purchase agreement calls for regular monthly
17		lump sum payments by Hydro to sister/parent companies; where the lump
18		sums do not depend on the level of consumption of the generator's power or
19		the variability of the energy provided to meet demand.
20		Response: Muskrat Falls is like all other generators: the physical plant is a fixed
21		cost. However, this does not determine its classification. The NARUC COS
22		Manual does not focus on the share of plant that represents fixed cost in
23		reviewing classification methods. Instead, the focus is no reviewing methods
24		under demand-only and demand and energy classification alternatives, with
25		the latter not being restricted to certain types of generation plant. As stated
26		above, the Equivalent Peaker approach formally links system planner behavior
27		to the classification computation to a greater extent than other methods.
28		Despite greater complexity, the Equivalent Peaker approach arguably has an
29		advantage from the perspective of economic theory.