1	Q.	Reference: Study, page 9 - Transmission Planning Criteria TP-S-007 NLSO Standard
2		www.oasis.oati.com/woa/docs/NLSO/NLSOdocs/TP-S-
3		007_Transmission_Planning_Criteria_UPDATED_05112018.pdf
4		
5		Considering the steady-state voltage criteria sets the post-contingency limits to 0.9 to 1.1
6		pu for all bus voltages (TP-S-007, section 5.4.1), why is the voltage limited to 1.05 pu at the
7		synchronous condensers terminals in such scenarios? See Appendix B, page 6.
8		
9		
10	Α.	While the post-contingency limits for bus voltages are set between 0.9 and 1.10 ${ m pu}^1$ of
11		buses, there is an exception for the terminals of the synchronous condenser. The
12		synchronous condenser is a generator, and generators are typically designed to operate
13		within 5% of rated voltage. Deviations in voltage outside these limits may cause thermal
14		stresses as a result of saturation of the magnetic core and excessive fluxes in the laminated
15		core structure of the generator. "IEEE Std C37.102-2006," IEEE Guide for AC Generator
16		Protection ² outlines typical protection settings for overvoltage conditions of a generator in
17		which a unit should be disconnected from the system. These settings recommend tripping a
18		generator within 20 minutes if the overvoltage condition is 10% above rated voltage.
19		
20		Existing protection of the synchronous condenser, in the form of an excitation limiter, is
21		currently set such that if the voltage at the terminals of the unit reach 7% above rated
22		voltage the excitation system will act to prevent voltages in excess of that value.
23		
24		As a conservative planning measure, Newfoundland and Labrador Hydro has set the limit of
25		the synchronous condenser to 5% above rated voltage as the 10% overvoltage is not
26		possible for these units.

¹ Per unit ("pu"). ² Institute of Electrical and Electronics Engineers ("IEEE").

- 1 Newfoundland and Labrador Hydro will update its "NLSO Standard Transmission Planning
- 2 Criteria Doc # TP-S-007"³ to reflect the terminal voltage limitations.

³ Newfoundland and Labrador System Operator ("NLSO").